Remote Control of Intestinal Stem Cell Activity by Haemocytes in Drosophila
نویسندگان
چکیده
The JAK/STAT pathway is a key signaling pathway in the regulation of development and immunity in metazoans. In contrast to the multiple combinatorial JAK/STAT pathways in mammals, only one canonical JAK/STAT pathway exists in Drosophila. It is activated by three secreted proteins of the Unpaired family (Upd): Upd1, Upd2 and Upd3. Although many studies have established a link between JAK/STAT activation and tissue damage, the mode of activation and the precise function of this pathway in the Drosophila systemic immune response remain unclear. In this study, we used mutations in upd2 and upd3 to investigate the role of the JAK/STAT pathway in the systemic immune response. Our study shows that haemocytes express the three upd genes and that injury markedly induces the expression of upd3 by the JNK pathway in haemocytes, which in turn activates the JAK/STAT pathway in the fat body and the gut. Surprisingly, release of Upd3 from haemocytes upon injury can remotely stimulate stem cell proliferation and the expression of Drosomycin-like genes in the intestine. Our results also suggest that a certain level of intestinal epithelium renewal is required for optimal survival to septic injury. While haemocyte-derived Upd promotes intestinal stem cell activation and survival upon septic injury, haemocytes are dispensable for epithelium renewal upon oral bacterial infection. Our study also indicates that intestinal epithelium renewal is sensitive to insults from both the lumen and the haemocoel. It also reveals that release of Upds by haemocytes coordinates the wound-healing program in multiple tissues, including the gut, an organ whose integrity is critical to fly survival.
منابع مشابه
Heterogeneity of the Level of Activity of Lgr5+ Intestinal Stem Cells
Intestinal stem cells (ISCs) are a group of rare cells located in the intestinal crypts which are responsible for the maintenance of the intestinal homeostasis and intestinal regeneration following injury or inflammation. Lineage tracing experiments in mice have proven that ISCs can repopulate the entire intestinal crypt. It is noteworthy that in such experiments, only a subset of intestinal cr...
متن کاملDrosophila Ras/MAPK signalling regulates innate immune responses in immune and intestinal stem cells.
Immune signalling pathways need to be tightly regulated as overactivation of these pathways can result in chronic inflammatory diseases and cancer. NF-κB signalling and associated innate immune pathways are crucial in the first line of defense against infection in all animals. In a genome-wide RNAi screen for modulators of Drosophila immune deficiency (IMD)/NF-κB signalling, we identified compo...
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملCdk4 functions in multiple cell types to control Drosophila intestinal stem cell proliferation and differentiation
The proliferation of intestinal stem cells (ISCs) and differentiation of enteroblasts to form mature enteroendocrine cells and enterocytes in the Drosophila intestinal epithelium must be tightly regulated to maintain homeostasis. We show that genetic modulation of CyclinD/Cdk4 activity or mTOR-dependent signalling cell-autonomously regulates enterocyte growth, which influences ISC proliferation...
متن کاملPERK Limits Drosophila Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress
Intestinal homeostasis requires precise control of intestinal stem cell (ISC) proliferation. In Drosophila, this control declines with age largely due to chronic activation of stress signaling and associated chronic inflammatory conditions. An important contributor to this condition is the age-associated increase in endoplasmic reticulum (ER) stress. Here we show that the PKR-like ER kinase (PE...
متن کامل